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Abstract. This chapter introduces the concept of classifier knowledge reuse as a
means of exploiting domain knowledge taken from old, previously created, relevant
classifiers to assist in a new classification task. Knowledge reuse helps in construct-
ing better generalizing classifiers given few training examples and for evaluating
images for search in an image database. In particular, we discuss a knowledge reuse
framework in which a supra-classifier improves the performance of the target clas-
sifier using information from existing support classifiers. Soft computing methods
can be used for all three types of classifiers involved. We explore supra-classifier de-
sign issues and introduce several types of supra-classifiers, comparing their relative
strengths and weaknesses. Empirical examples on real world image data sets are
used to demonstrate the effectiveness of the supra-classifier framework for classifi-
cation and retrieval/search in image databases.

Keywords: knowledge reuse, image classification, image database, curse of
dimensionality, soft classifiers

1 Introduction

1.1 A Priori Knowledge for Image Classification

The development of computer vision systems that can perform as well as hu-
mans has proven to be an extremely difficult task. One of the reasons often
cited for this is the difficulty in giving artificial vision systems enough domain
knowledge to handle the complexity of real-world image understanding tasks.
One of the most important image understanding problems that suffers from
this drawback is image classification, i.e. the task of building a system that
can distinguish one category of images from another. As an example, con-
sider the problem of distinguishing images of males from images of females.
Considerations of physiology, customs of clothing design, grooming habits,
and other less tangible concepts are often leveraged by humans making such
a decision. Understanding what relevant knowledge is available and how it
can be included in an image classification system is still an open problem.
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Exemplar based inductive image classifiers try to generalize from a given
training set. They can utilize two types of knowledge sources: raw image
data and a priori knowledge about the image data set. The raw image data
may consist of an array of pixel intensity values (for grayscale images) or
color intensity information (for color images). Images represented in this or
a similar fashion potentially contain a very large amount of information (“A
picture is worth a thousand words™), but this information is difficult to handle
without other a priori knowledge. Generally, using pixel value information
directly for image classification is extremely difficult, if not impossible due
to the extremely high dimensional input space.

A priori knowledge about the image data set is simply information about
the data set that is external to the data itself. This information can be used in
several capacities in the construction of an image classifier. One of the most
important uses of a priori knowledge is for feature extraction. For example,
the knowledge that a set of images are from indoor office scenes might influ-
ence to what degree edges would be considered germane features since they
tend to occur more commonly in man-made objects. A priori knowledge can
also be used to choose image sets or learner architectures, or even modify the
learning process itself. For example, Bayesian approaches to image classifica-
tion (e.g. [21]) use a priori knowledge in the form of prior class probabilities
and prior distributions assumed for the model parameters. Some classifier
architectures use the structure and value of model parameters to represent a
priori knowledge (e.g. the discriminant function in statistical classifiers [12],
size and order of features in decision trees [23], and the type and number
of hidden units, amount and form of regularization in feed-forward neural
networks [13]). Such approaches can work very well if the resulting inductive
bias matches the problem very closely. However, in practice it may be quite
difficult to use this type of knowledge to select and tune a proper model.
Also, standard assumptions used (independence among variables, Gaussian
distributions, etc.) to make the problem tractable often result in a loss of
accuracy [16,21].

1.2 Classifier Knowledge Reuse

Besides training data and a priori knowledge, previously constructed classi-
fiers or labelers of images are a third type of knowledge source to consider for
image classifier construction. This source is essentially a product of the first
two. Image labels may have been present when the image database was orig-
inally created, or subsequently determined during later classification tasks.
Alternatively, labels may result from a partitioning of the input image space
induced by a different data set/categorization combination. In all three cases,
the labels contain knowledge derived from both previous image data sets and
a priori information. If this knowledge is relevant to the current classification
task, then it can be used to built a better classifier. In Figure 1 salient fea-
tures (e.g. size, color, shape) have been extracted from some unknown and
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Fig. 1. Knowledge transfer between related tasks.

perhaps currently unavailable image data set, and an artificial classifier has
been built to discriminate images of grapefruit from images of pears. We refer
to a previously constructed classifier as a support classifier. We wish to con-
struct a new target classifier to discriminate images of oranges from images of
apples. Given that the same features are available, we can present images of
apples and oranges to the grapefruit/pear classifier and observe its resulting
behavior. In this case, since apples have similarity to pears and oranges have
similarity to grapefruit, we expect that the grapefruit/pear classifier should
be able to provide some indication as to whether we are showing it a image
of an apple or an orange.

1.3 Characteristics of Classifier Knowledge Reuse

Classifier Knowledge Reuse is the idea that knowledge embedded in a pre-
viously created set of classifiers can be used to build a new classifier that
performs better than one which simply uses its current training data and
any available a priori knowledge for the current task. This is most effective
when there is insufficient information in the current training set and a priori
sources, and thus knowledge from classifier reuse can supplement existing
knowledge. For example, if there are too few or noisy training images, then
statistics over this training set may be difficult to estimate, resulting in poor
learning. If there is too little a priori information, then the feature space for
artificial learners may become too noisy or too large (high dimensional) to
be searched effectively.

Besides assisting in new classification problems, classifier knowledge reuse
has another, more interesting application. In traditional image classification
problems, the goal is to build classifiers that generalize well to new, unseen
images the classifier may encounter. Thus, the classification task is static but
the image set of interest is dynamic. Consider the converse to this; a static
image set and a changing set of classification tasks corresponding to newer
uses of or studies on the same data. The goal in this application is to be able
to create a knowledge base for future understanding and search in a fixed set
of images.
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As an example, consider the Mars Pathfinder images gathered recently
by NASA. At the end of the mission, the set of available images does not
grow or change. However, as science progresses and further analyses are per-
formed, knowledge about this set in the form of classifications of the images
may increase over time. The set of previous classifications can function as
a “knowledge profile” about each of the images. When a researcher wants
to find all of the images that fit a particular profile, he/she could manually
classify some of the images as positive and negative examples of the concept
being searched for. Knowledge from the previous classifications could be used
to build a new classifier that can make decisions on the image set and retrieve
the images that have been classified as positive examples. If the image set
is static, then the previous classifiers no longer need to be available, as only
the class labels that they generated are important. Thus, humans, automated
classifiers with a limited lifespan (e.g. the Pathfinder probe), and other tem-
porary types of classifiers can be used. If the image set is not static and the
previous classifiers are still available, then new images can also be searched.
An example of this type of knowledge reuse is presented later in this chapter.

2 Methods of Classifier Knowledge Reuse

We first briefly survey some existing research into architecture specific clas-
sifier knowledge reuse. Most of this work has focused on knowledge transfer
mechanisms that use multilayer perceptron (MLP) neural network classifiers
and has explored two main mechanisms; (i) knowledge re-representation and
(ii) sharing internal state information. The benefits and limitations of these
existing approaches are discussed, and then a broader framework for general
classifier reuse is introduced.

2.1 Knowledge Re-representation

In the context of knowledge reuse, knowledge re-representation is the con-
cept that knowledge about a classification task is extracted from a classifier
in some new representation that is suitable for insertion into later classi-
fiers. There has been much work on knowledge intensive learning focusing on
symbolic rules extracted from and used in the creation of neural classifiers
(e.g. [11,14,22,31,34)). If knowledge can be represented as rules, then these
rules may be inserted into other neural networks. Often, these rules are used
to initialize or adjust the structure or weights in multilayer perceptron neu-
ral networks. These approaches have resulted in better performing classifiers
and/or classifiers which can be trained more quickly. However, these rule ex-
traction approaches cannot reuse easily from non-MLP classifiers and have
not demonstrated scalability to the cases where the number of relevant rules
is very large.

Although less popular, there have been other re-representation schemes
investigated. In [32], a neural network is used to recognize previously learned
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concepts in order to estimate the probability of an old class being presented as
input when training a new classifier. The explanation-based neural network
algorithm (EBNN) is used to train the classifier for the current classification
task by using the target function derivative information (the re-represented
knowledge) to augment the learning process. In another, unrelated work [33],
a scaling vector for a nearest neighbor classifier is learned for one classification
task and reused for another, related task.

2.2 Internal State Sharing

Instead of re-representing knowledge, some knowledge reuse research has fo-
cused on reusing internal state information, namely weight values in MLP
style neural networks. Under the belief that related classification tasks may
benefit from common internal features, Caruana [6] has created an MLP
based multiple classifier system that is trained simultaneously to perform
several related classification tasks. In this work on two layer neural networks,
the first layer is shared by several related classification tasks. The premise
is that related tasks have similar connectionist representations in the weight
space, and that by training on more and a wider variety of samples (be-
cause there are multiple training sets), these representations can be better
learned. The second layer of this neural network is separated and indepen-
dent for each classification task. Improved classification performance has been
demonstrated in some cases. Baxter (2] has developed a rigorous analysis of
a similar type of architecture, showing that as the number of simultaneously
trained tasks increases, the number of examples needed per task for good gen-
eralization decreases. These knowledge sharing methods are not knowledge
reuse by our previous definition since all of the classification tasks must be
created simultaneously, but share many of its qualities. More closely match-
ing the knowledge reuse definition is work by Pratt [25], in which some of the
trained weights from one MLP network trained for a single task are used to
initialize weights in an MLP to be trained for a later, related task. Improved
training speed has been shown for this reuse method.

2.3 Supra-Classifier Knowledge Reuse

We now describe a general framework for classifier knowledge reuse recently
introduced in [3,4]. The Supra-classifier knowledge reuse framework is a sim-
ple two layer structure which allows the reuse of knowledge from any type
and quantity of previously created classifiers. These classifiers ultimately
share the same input domain as the new classification task of interest, al-
though they may operate on different features extracted from the images.
The supra-classifier knowledge reuse process is to present the images to all
available previously trained classifiers and then use the resulting output vec-
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tor of classification labels as the input for a second stage supra-classifier!.
This supra-classifier then makes the final classification decision for the cur-
rent target classification task (¢, (-) in Figure 2.) Previously trained classifiers

Final Classification & (x)

Supra-Classifier
3

Class Label Cl(") Class Label cy(x) Class Label c((x)

Support Support
Classifier cq Classifiercp
Futum Extractor t

l Feature Extractor 1 Feature Extractor 2

Common Domain X € R

Fig. 2. A Supra-Classifier based knowledge reuse framework.

are termed support classifiers. Support classifiers are generally (but not al-
ways) designed for tasks other than the current target classification task of
interest. In Figure 2, two of the three support classifiers are for different tasks,
and one has been constructed for the current classification task of interest
using only the training set.

While Figure 2 may appear to bear a superficial resemblance to recent
popular approaches such as stacking [35], committees, ensembles [15,17,27},
and mixtures of experts[19,20,26), the supra-classifier is fundamentally differ-
ent from these “combiner” approaches. The supra-classifier is a generaliza-
tion on combining where the support classifier could be designed for different
tasks, and are immutable, having been trained previously. Support classifiers
for ensembles/combiners try to solve the same classification task (though they
may differentiated by input regions or feature selection) and are not previ-
ously created classifiers. Techniques like combining and stacking are simply
good methods of decomposing a classification task into simpler tasks and
generally do not reuse previous knowledge.

There is a simple probabilistic intuition to explain why the supra-classifier
can effectively reuse knowledge from previously constructed relevant classi-

! This restriction allows one to use any type of support classifier since internal
information is not needed.
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fiers. Suppose that each image for a new classification task is represented as
a point in a two-dimensional feature space. Let there be two target classes
of images, X and O, in this space, and let a distribution of image samples
be represented in Figure 3. Suppose there is a previously trained (support)

X X 5
X X ; X o
X /I X O O
X X X X/ o 5
o/ 0 .
X "O o
X X I/IL ‘~\\\\ O
X x /% o™ O
« x o0 T
o Yo W 7~
o/ 3 ¥ o
o /O O 5 0

Fig. 3. Knowing the support classifier labels (indicated by the grey levels) helps to
guess the target class.

classifier that divides the feature space into three regions; black, dark gray,
and light gray. In Figure 3 these regions are separated by dotted lines and the
X and O points in these regions are colored appropriately. In the example
here, knowing that the support classifier label is black for a particular image
gives a good indication that the target class for that image is probably X.
Thus, knowing the support classifier label has helped guess the target class
label correctly with greater probability. A formal treatment of this result is
presented in [5].

3 Supra-Classifier Design

The supra-classifier design process is dependent on the specifics of the training
image set and support classifiers since it should be able to use both of these
knowledge sources effectively to maximize classification accuracy. We now
discuss the criteria of size of the training set and number of support classifiers
to guide the construction of the supra-classifier and compare different supra-
classifier approaches in the context of these criteria.
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3.1 Space of Knowledge Sources

Supra-classifiers make classification decisions on a vector of categorical (class
label) values. Just like any normal classifier, they use the target training
samples (and a priori information if available) to make a decision. In a nor-
mal classifier, typically the feature set is static, and to improve classification
performance more and/or better training samples are needed. In contrast
to this, the premise of the supra-classifier framework is that knowledge can
also be added by increasing the rumber of relevant support classifiers {input
features). Thus, although the design of a supra-ciassifier is closely tied to
that of making a normal classifier with a discrete input space, there is the
additional design goal of being able to perform better when more features
are avaijlable, especially in the scenario of a static training set size. Consider
the “knowledge space” of Figure 4. Points in this space qualitatively repre-

Much Relevant
Knowledge about
the Target
Classification Task

Low Knowledgc
about the Target
Classification Task .

JIncreasing Number of Training Samples

|Increasing Number of Support Classifiers

1
a—

Fig. 4. Hypothetical space of available knowledge about the target classification
task.

sent the amount of knowledge that is available in a target training sample
set to a supra-classifier. With more “good” samples or support classifiers, the
amount of knowledge increases. Goodness depends on certain desirable condi-
tions such as independence and random sampling. The hypothetical greyscale
shown has contours where the knowledge relevant to the target classification
task (as reflected by the ideal achievable error rate) is equal in quantity. The



To appear in: Soft-computing and.image processing, S.K. Pal and A. Ghosh, and M. K. Kundu, Eds., Springer-Verlag, 1

supra-classifier designer must know where in this knowledge space he/she is
working, and choose a supra-classifier that functions well in that part of the
space.

We now set up the mathematical framework for supra-classifiers, describe
several potential supra-classifier architectures, and discuss where in the above
knowledge space they are the most appropriate. We also discuss some tech-
niques that expand the region of usefulness in the knowledge space for some
of these classifiers.

3.2 Definitions

Let the target classification task be 7, and let 7 have discrete range S; and
d dimensional input domain space R¢. Let {z,y}, : = € R%,y € S, be the
set of training examples for task 7. We assume that {z,y}, is a sample
set from the true distribution for task 7 having associated random variable
(X-,Y:) € (R4, S;). Our goalis to find the most likely value of the conditional
marginal Y7|(X,; = z) and define this maximum likelihood function to be
t(zr) = argmax, P(Y; = y|X; = z). Thus, t(-) : t(-) € S; is the target
function that we would like to approximate using the information in {z,y}.
Let B be a set of support classification tasks which have the same input
domain space R¢ as task 7. Let {c;(-)} : b € B be the corresponding set of
classifiers where each c;(-) maps R¢ ++ Sp : b € B.2 Let X, be the random
variable associated with the input values of training sample set {z, y}-. Let
T : T, = t, (XT)A be defined as the random va:riable associated with the
target function of X. Similarly, let G, : Cp = ¢ (X;) be the random variables
resulting from the application of X, to the support classifiers.

3.3 Probability Estimate Based Supra-Classifiers

One of the most common and compelling approaches to constructing a supra-
classifier is to perform probability estimates on the discrete feature space
of support classifier labels. An ideal probability based supra-classifier ¢} (z)
will always choose the most likely class of the y € S, given the class labels
{es(z)} : b € B (maximum posterior probability). More specifically, for any
given set of values {zy : 2, € Sp} : b € B we can define the maximum
probability function m,(-) as

m:({zp: 26 €Sp}:bEB) = argm;a.xP(T, =y{Ch=2}:0€B). (1)

We can then define an ideal classifier based on this maximum probability
function as

ct(z) =m-({co(z) : ep(z) € Sp} : b € B). (2)

% Although some of the support classifiers may have been trained for task 7 directly,
in general b #'7 and S, # S, as the tasks are different.
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where c?(-) has associated random variable C? : C* = ¢2(X,). If the number
of support classifiers is small and the number of target training samples is
large (the upper left corner of Figure 3), then this ideal supra-classifier can
be built by estimating probabilities directly from the sample probabilities.
However, if the number of support classifiers is quite large, Equation 2 is
not directly scalable due to the curse of dimensionality [10]. One aspect of
this “curse” is the fact that in order to maintain a constant confidence in
sample based probability estimates as the dimensionality (number of support
classifiers) goes up, one must have an exponentially increasing number of
samples.

Thus, in practice, approximating approaches to Equation 2 are usually
required. Most of these approximations use assumptions on and/or a pri-
ori knowledge about the structure of dependencies between support classi-
fiers. Adding knowledge in this manner can reduce the dimensionality of the
probabilities to be estimated. Examples of this include belief networks[24]
and log-linear modeling(7]. While this structuring generally requires a priori
knowledge specific to a particular classification task, some common assump-
tions such as independence among support classifier labels conditional on the
target classification task are often made.

The Naive Bayes Classifier. If the independence assumption truly holds,
then probability based supra-classifier types restricted to the upper left cor-
ner of Figure 4 can move rightward (toward more support classifiers) and
downward (toward less samples) to some degree without compromising clas-
sification performance. The best known (and possibly simplest) classifier that
takes advantage of this is the Naive Bayes classifier[23]. Bayes rule states that

P({Cs} : b€ BIT,)P(Ty)

P({Cy}: b€ B) ®)

P(T-|{Cs} : b e B) =

Given the conditional independence assumption, the conditional term of the
numerator in Equation 3 can be calculated as

P({Cy} : b€ BIT;) = [] P(Cs|T>).
beB

The term P(T;) can be assumed constant (equal priors), estimated from the
samples, or estimated from a priori information. The denominator of Equa-
tion 3 can be assumed to be constant (equal prior support class probabilities),
but is often calculated as

P{C}:beB)= )Y P(T. =y) [[ P(CIT; =),
yES, beB

where the conditional independence assumption is made once again. The
probabilities in the RHS of Equation 3 can be estimated from the training
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samples and be substituted into Equation 1. The ideal classifier of Equation 2
can then be calculated from these estimates. This supra-classifier is equivalent
to the ideal classifier if the conditional independence assumption holds.

Bayes classifier with Feature Selection. If there are many training sam-
ples and few support classifiers, then Equation 2 can be estimated directly.
However, if there are many support classifiers, but most of them are irrelevant
for to the target classification task, then a process of feature selection can be
used to eliminate the less useful features. This corresponds to moving the
target classification task leftward in Figure 4, making direct probability esti-
mates easier. Feature selection requires making a judgement on which subset
of the support classifiers of a given size is optimal for supra-classifier accu-
racy. In general, this is a well studied problem, and finding the best feature
selection method often depends on the target classification task.

Bayes Classifier with Smoothing. Rather than assuming independence or
hoping that most of the support classifiers are irrelevant and can be excluded,
it is also possible to use smoothing to make better probability estimates of the
target classes conditional on the support class labels. The kernel method for
probability smoothing introduced in 1] allows estimation of the joint target
and support classifier label probabilities P(T, = y,{Cy, = x4} : b € B) ,
which is proportional to P(T» = y|{C, = 24} : b € B) (the conditional target
class probabilities). Suppose there are |B| support classifiers and n images as
training samples. The kernel smoothing function can be written as:

n_|B
P(T, =y,{C=m} :be B) = - > [] KGi,b, ), @)

i=1 b=1

where K(i,b, ) is a kernel function and A is a smoothing factor. The sum
is over all the set of training images =, : s = 1...n and the product is over
all |B| support classifiers. The kernel for a test support classifier label vector
Tiest 18 defined as:

K(i,b, /\) = A, Cb(zs) = Cb(xtest)

= '[SL,,%’ cb(xs) 7é cb(ztest) (5)

where z, is the sth training image and |S;| is the number of different class
labels for support classifier b. A is defined only on max, EIT[ < A< 1. The
case of A = 1 means there is no smoothing, and with a large number of
support classifiers (lower right corner of Figure 4), would mean that most
of the probability estimates would almost certainly be zero. Since we are
interested in the left hand side of

P(T, =y,{Ch=mz}: b€ B)

P(T, =yl{Cy =z} : b€ B) = P({Cy, =z} :b € B) ’

(6)
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and the denominator of the right hand side of Equation 6 is constant for a
given image, if we simply calculate the numerator of Equation 6 for all possi-
ble target values and take the largest, we are performing a direct estimation
of the ideal probabilistic supra-classifier Equation in 2.

3.4 Combiner Based Supra-Classifiers

Combiner or ensemble based classifiers are systems which use the classifi-
cation decisions of many simultaneous target classifiers and “combine” their
decisions into a final decision. Combiners have been extensively researched
(see {29] for a survey), and we so we only introduce a simple application to
the supra-classifier framework here. Consider the ideal classifier of Equation
2 constructed using only a single support classifier b and call this a “voting”
classifier c}°*¢(z) as defined by

eyt (z) = m.({co(z)} : b € B), (7

where 7 is the target task. The voting classifier makes a guess at the most
likely target class based only on the information from one support classifier;
in essence this is the support classifier’s “vote” for the correct target class.
The supra-classifier consists of tallying all |B| votes and choosing the tar-
get class with the most votes. While we avoid the problems of making high
dimensional probability estimates, this supra-classifier is sensitive to noisy
voters. If a few “good voters” make correct choices most of the time, they
may be overwhelmed by those voters which are essentially guessing randomly,
or always choosing the target class with the highest prior probability. Thus,
it may be desirable to weight voters by their accuracy to favor the better
voters. Some weighting schemes are discussed in section 3.8.

3.5 Tree Based Supra-Classifiers

In a traditional decision tree classifier, the strategy is to divide an input
space into “hyper-rectangular” target class regions of high class “purity”.
Branching decisions are based on how much each input feature increases
the class “purity” of examples in resulting subregions. The supra-classifier
framework is a very intuitive application of tree based classifiers in that it
shares the goal of creating target class regions of high class purity, but the
regions are not simple “hyper-rectangles” as would be found in a real valued
input space. Instead, target class regions are defined by how the support
classifiers partition the image feature input space.

Consider that any single support classifier ¢;(-) partitions the input space
R into regions labeled for the classes of classification task b. Recall from
the above discussion on the intuition of the supra-classifier architecture that
if ¢p(-) has (even a small amount of) relevant knowledge to contribute to
the target classification task and a good relevance measure is chosen, then
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it should partition the input space into subregions of greater purity (of the
target classes) than would a random partitioning.

Consider the extension to the set of |B| support classifiers that define a set
of |B| overlapping partitions of the input space. The overall result is a par-
titioning of the input space consisting of |B|-way “intersection regions”. It is
easy to see that as |B| increases, the average size of these intersection regions
will decrease as their number increases. If each of the |B| support classifiers
has contributed some amount of unique knowledge, then the premise of tree
classifiers is that the average class purity of the intersection regions will also
increase. A hypothetical example can be seen in Figure 5 where a two di-

X O
XX 0 @)
X 0O
\ 0
X
x X~
x X |
X
X X
X
X
S

Fig. 5. A hypothetical 2-D feature space that has been partitioned by 4 different
support classifiers, identified by the different grayscales of the partition boundaries.

mensional feature space of two target classes “X” and “O” (similar to figure
3) is partitioned by different four support classifiers, the boundaries of which
are represented by the four line grey levels. Here it can be seen that class
purity of each intersection region us higher when more support classifiers are
considered.

A difficulty with decision trees is that at each additional partitioning, the
number of image samples in each region intersection tends to drop. Thus,
after only a relatively few features, there may no longer be sufficient samples
to make probability estimated upon which further branching is based. Most
practical decision tree classifiers order the branching by decreasing relevance,
conditional on the branches already taken. A commonly used relevance mea-
sure is mutual information of each support classifier with the target. Previous
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work [5] has given empirical evidence that this relevance measure is also ef-
fective in a supra-classifier framework.

3.6 Similarity Based Supra-Classifiers

Probability based supra-classifiers tend to have the same strengths and weak-
nesses. If the set of support classifiers for the target classification task is large
and cannot be reduced by feature selection or compensated for by indepen-
dence assumptions or smoothing, then it may not be appropriate to use these
techniques. Instead, it may be better to use similarity based supra-classifier
techniques instead. These techniques consist of defining distance measures
between images in the space of support classifier labels, and then making a
final target classification based on these distances. Ideally, images that are
similar would have a small distance between them, while dissimilar images
would be far from each other. For the purposes of classification, an optimal
distance measure d(z, y) between two images, z and y, for target classification
function ¢(-) would have the property:

d(z, ylt(z) # t(y)) > d(z,ylt(z) = t(y)). (8)

for all value pairs of z and y in the set of images. Equation 8 states that if two
images are of the same target class, the distance between them will always
be less than if they are of are differing target classes. The challenge then, is
to find a good distance measure and build an appropriate supra-classifier to
achieve satisfaction of Equation 8.

Hamming Nearest Neighbor Supra-Classifier. The Hamming Nearest
Neighbor (HNN) is a simple classifier for discrete features (e.g. support clas-
sifier labels) similar to a traditional nearest neighbor which operates in a
Euclidean space. If I(-) is the indicator function, then the (Hamming) dis-
tance between two samples T¢rqin and Ties: can be calculated as

DI{B}I(:Ctrainyxtest) = Z I(cy(Terain) # Co(Ttest))-
b:b=1...]{B}|

For each test sample, the Hamming Nearest Neighbor (HNN) supra-classifier
will choose the class label of the training sample with the smallest Ham-
ming distance from it. There is no need to estimate probabilities as in the
probability based supra-classifiers.

Recent analysis gives indication that the Hamming distance as used in
the HNN classifier approaches the optimal distance measure [4,5]. One result
of this analysis can be summarized in the following theorem:

Theorem:
If the support classifiers {cs(-)} : b = 1...|{B}| are independent of each
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other conditionally on the target class t(-), we are given three images z,, =3,
and ., chosen randomly and independently from some distribution, t(z,) =
t(zy) # t(zg), and the priors for the target classes are equal, then

o P(Dy(5y|(z8,Ty) > Di(B}|(Tar T)) = L.

Proof of this theorem is described in [5]. This theorem states that in the
limit as more relevant, independent support classifiers become available, the
probability that the Hamming distance between a training and test sample
of different target classes will be greater than the distance between the test
sample and a training sample of the same class approaches 1. It should also
be noted that this theorem holds even if there is only one training sample
of each target class and even if all of the support classifiers are only very
weakly relevant to the target classification task. Noise from totally irrelevant

classifiers will tend to cancel itself out as long as the independence assumption
holds.

Thus, the HNN supra-classifiers is useful even in the extreme bottom right
corner of the knowledge space described in Figure 4. Furthermore, a simple
application of the Hoeflding inequality [18] is able to place an exponential
upper bound on the convergence rate of the HNN supra-classifier as function
of the average relevance of the support classifiers.

Despite this potentially powerful result, a few caveats are in order. First,
the existence of an infinite number of independent, relevant support classi-
fiers is only possible if the classification problem has zero Bayes error. Also,
the HNN may not perform well if a few strong features can be selected for
the target task (effectively described in the upper left corner of Figure 4),
since it assumes a more uniform distribution of relevant knowledge among
the support classifiers. It is possible to weigh the indicator functions in the
Hamming distance by the relevance of the support classifiers to compensate
for a non-uniform distribution of knowledge, thus moving its applicability
leftward in the knowledge space.

3.7 Use of Other Supra-Classifier Types

The problem of building a supra-classifier is simply the problem of building
a classifier that can effectively use (perhaps a large number of) categorical
inputs features. Many classifiers, even if not specifically designed for cate-
gorical input, may be used if an appropriate representation for the support
classifier labels is made. For example, the Multilayer Perceptron (MLP) and
Radial Basis Function (RBF) classifiers expect their input to be a vector of
real values, so a simple “1-of-M” encoding of the support classifier output
labels can be used.
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3.8 Relevance Measures and Their Uses

In many cases the support classifiers will vary widely in their usefulness in
assisting a supra-classifier. Many of the supra-classifiers can benefit from
(and some even require) knowing the relevance of the support classifiers to
build a practical system. Relevance of a support classifier or set of support
classifiers is a measure of its ability to improve the classification accuracy of
a supra-classifier. In general, attempts to make relevance measures on sets
of many support classifiers fall prey to the same curse of dimensionality that
the ideal probabilistic supra-classifier does because many, if not all, of these
measures depend on probability estimates. Thus, we will make independence
assumptions as needed so that we may only consider relevance measures of
single support classifiers. Depending on the specific type of measure, relevance
can be used to weight support classifiers for purposes such as ranking of
support classifiers for feature selection or weighting of terms in a Hamming
distance for the HNN supra-classifier.

Mutual Information. The information theoretic measure mutual informa-
tion is a measure of “shared knowledge” between two random variables. A
standard definition of mutual information between random variables U and
V in bits is

PU =u,V =v)
P(U =u)P(V =v)’

IU, V)= P(U =u,V =v)log, 9)

If I(T;, Cy) > I(T4,C}) where Cy = cp(X,), Co = c(X,), and Ty = t(X;),
then we say that ¢, “knows” more about ¢, than does cj. From Fano’s in-
equality[9], we also know that in this case, an information theoretic upper
bound on performance of a classifier built to perform classification task T
using only the information from c¢; is higher than for one built using only
the information from cj. As mentioned earlier, this is a commonly used rel-
evance measure in decision tree construction, where the measure is made
conditionally on all of the previously taken branches.

A Value Distance Metric. Stanfill and Waltz [30] introduced a Value Dis-
tance Metric (VDM) to measure the distance between two discretely valued
vectors for instance based learning (IBL) methods, making is applicable to
similarity based supra-classifiers such as the HNN. This metric considers the
differences between the frequencies of each target class occurring over the
target training set conditional on the value of each feature (support classifier
label), summed over all of the support classifiers. Consider the labels c(z)
and cy(y) of a single support classifier b for two images = and y. In a supra-
classifier framework, the VDM defines the distance between these two values
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to be:

{S-}
dy(es(2), 05 (1)) = > [F(T =t|Cy = ey(x)) — F(T = t|C = cs(y))*.(10)
i=1

Where the F(-) are the sample probabilities of each event over the image
training set. Often, the constant £k = 1 is used. Thus, for every support
classifier with |{S;}| possible labels, there is a |{S;}| x |{S-}| matrix of
distance values dy(:,-). Stanfill and Waltz also included a weighting term
w? which made dy(-,-) asymetric. A priori knowledge is required to use this
weight effectively, and its exclusion keeps dp(:,-) symmetric.

Using the above metric calculated for all of the support classifiers over
the image training allows the total distance between two images to be:

|{B}
D(es(a),cs(y)) = D wowyds(c(x), c(y)) (11)

b=1

where w, and wy are weights on the images themselves and r determines a
norm (e.g. 7 = 2 means Euclidean distance). In some IBL methods, these
weights can be used to favor those images that help discriminate the target
classes better. In [8] a modified VDM (MVDM) demonstrates empirically the
usefulness of the VDM with the HNN classifier in an IBL context.

4 Experiments

In order to demonstrate knowledge reuse in the supra-classifier framework, we
have chosen two classification tasks, one each for the supra-classifier frame-
work’s two major application areas. The first application is the enhancement
of classification performance of a new classifier related to previously con-
structed classifiers. For this, a collection of binary classifiers of images of
military vehicles is used to aid in the creation of a similar such classifier.
Second, previous classification labeling of images in a database by a human
user are used to predict current classifications of interest to that person on
the same database. These predictions could then be used to recall specific
images.

4.1 Target Recognition

The goal here is to build a classifier to discriminate between two classes
of military vehicles which are labeled HMMWYV and 2S1. The sources of
knowledge available are a training set of second generation FLIR images of
outdoor scenes containing these two types of vehicles and a collection of ten
previously built vehicle discriminators. The images were segmented to extract
only the immediate region around the vehicles and each such sample is then
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represented by 47 scalar features, including 23 Zernike moments, 7 standard
moments, 6 normalized/central moments, and other assorted features such
as average intensity, height, width, etc [28]. The training set for the new
classifier consists of 20 examples of HMMWYV and 75 examples of 251.

All of the support classifiers are multilayer perceptron (MLP) two-class
neural networks that have been constructed to discriminate between the fol-
lowing pairs of vehicle types; “M35 and HMMWV”, “M35 and M60”, “M35
and ZSU”, “M35 and M730”, “HMMWYV and M60”, “HMMWYV and ZSU”,
“HMMWYV and M730”, “M60 and ZSU”, “M60 and M730”, and “ZSU and
M730”. Figure 4.1 shows sample images from the five classes. The M35 is
a truck, the M60, 251, and M730 are tanks, the HMMWYV is a “hummer”
transport, and the ZSU is a Soviet anti-aircraft launcher. Note that, while
some of these discriminators include HMMWYV as a class, none include the
251.

Fig. 6. Examples of preprocessed second generation FLIR images used for the tar-
get recognition problem: From top, left to right: 251, HMMWYV, M35, M60 and
M730.

Careful choosing and parameter hand tuning of a simple MLP classifier
allows a classification rate of about 98.5% using ali of the training exam-
ples as a knowledge source. As mentioned earlier, classifier knowledge reuse
is most useful when there is a dearth of knowledge from the training exam-



To appear in: Soft-computing and image processing, S.K. Pal and A. Ghosh, and M. K. Kundu, Eds., Springer-Verlag, 1

ples. Thus, we created an experimental setup that purposefully held back
some of the training examples to see if the knowledge from the previously
constructed classifiers could compensate for the loss of training set informa-
tion. The number of available training examples ranged from 4 to 32, evenly
distributed among the two target classes. We trained three traditional, un-
aided target classifiers for comparison: an MLP, a traditional single nearest
neighbor classifier, and a C4.5 decision tree.

Eleven support classifiers were available; the ten previous constructed
classifiers and an unaided MLP target classifier, chosen because it was a good
performer in informal testing. Several supra-classifiers types were constructed
including C4.5, MLP, the combiner based (VOTE), naive Bayes (BAYES),
and Hamming nearest neighbor (HNN) classifiers. The target class examples
were randomly divided into training and test examples. The supra-classifiers
and unaided classifiers were constructed using the training examples and
tested on the rest. This was iterated for 500 trials for each quantity of training
examples considered. Figure 4.1 shows the classification rate of the various
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Fig. 7. Classification rate of several supra-classifiers and unaided classifiers versus
the number of target training examples, for the target recognition problem.

supra and unaided classifiers on the test set versus the the number of target
training examples available. For very few training examples, all but the C4.5
supra-classifiers provided a substantial performance improvement over all of
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the unaided classifiers with the combiner (VOTE) followed by the naive Bayes
supra-classifiers demonstrating the highest overall performance. The unaided
MLP classifier was a superior performer to the unaided nearest neighbor and
C4.5 classifiers. As more training examples became available, unsurprisingly
the benefit of knowledge reuse diminished, since there was more knowledge
available from the training set. The results shown are statistically significant,
but for neatness, the error bars are not shown. These results give evidence
that when an inadequate target training set results in poor classification
performance, knowledge reuse can help.

4.2 Building An Image Knowledge Base

Although the supra-classifier knowledge reuse framework can help in the con-
struction of new, related classifiers, perhaps its best application is to the con-
struction of a knowledge base for a (possibly fixed) set of images. Consider
a fixed set of images such as works of art for which multiple classifications
have been made by human experts, artificial classifiers, and other types of
systems. For a particular image, the set of classification labels can act as a
powerful description that can be used in understanding it. Suppose one knew
the answer to dozens or perhaps even hundreds of categorizations of a pho-
tograph (e.g. indoor or outdoor, natural or man-made, whether it contains
people, etc.). An “internal representation” as to what the photograph was
about could be formed and perhaps one could even correctly answer novel
questions about it, all without ever actually having seen the image. This novel
desired classification could then be used to recall images from the database.

The supra-classifier knowledge reuse framework provides some of the tools
to construct a system with such an ability. Given an image database where
each image is annotated with a large number of classifications, a user could
manually classify a few positive and negative examples of some novel concept
of interest, which would become a training set for a supra-classifier. The
major challenge of building a supra-classifier for a database of this sort is
designing one that can effectively use a large number of support classifiers
with only a small number of training samples. This case of a small number of
high dimensional training samples corresponds to the lower right hand corner
of the knowledge space described in Figure 4.

In order to demonstrate how a supra-classifier framework can be used
as part of an image knowledge base system, a data set of 30 color images
(primarily photographs) from the authors’ personal collection and from a
commercial CD-ROM was assembled. These images were chosen to be (sub-
jectively) as diverse as possible, and some of them can be seen in Figure 4.2.
We defined 71 sets of potential categorizations for these images that repre-
sented mutually exclusive concepts. Examples include “Big vs. Small”, “Clean
vs. Dirty”, “Busy vs. Calm”, and “Solid vs. Liquid vs. Gas”. A web site
(http://www.lans.ece.utexas.edu/cgibin/cgiwrap/kdb/top.pl) was created to
present the 30 images to six human users, who were asked to classify the
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Fig. 8. Nine of the 30 images in the data set.

images in each of the 71 ways. These classifications constitute a “personal
profile” of knowledge about the images for each user, essentially making the
users become their own “support classifiers”. A 72nd classification was also
made by each user for each image to act as a test “target” for novel classifi-
cations. For this target, the users were asked to decide whether they “liked”
each image more than the “average” image in their judgement or not. A
supra-classifier would use these target classifications as a training set and
function as the judge of which images to recall based on whether the user
would “like” each image. Although for demonstration purposes, the six users
were asked to make a target classification for all of the 30 images, in a real
system, hopefully only a few of such classifications should be needed if there
is already enough information from a large number of support classifiers.

First Experiment - Number of Training Samples. The 30 photographs
were randomly split into training set and test sets of varying sizes so that the
dependency of supra-classifier performance on the number of training exam-
ples could be explored. The training set size ranged from 5 to 25 images with
the rest held as test images. We then used several types of supra-classifiers
to predict whether a subject would “like” each test image. These included a
multilayer perceptron neural network (MLP), a C4.5 decision tree classifier
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(C4.5), a Naive Bayes classifier (BAYES), the combiner (VOTE), a Hamming
nearest neighbor (HNN) and a simple baseline classifier that always guessed
the most common class in the training set (MCC). 500 trials (random splits
of the image sets) for each training set size and for each of the six users were
performed. The average classification test rate over all 500 trials for each type
of supra-classifier versus the number of available training examples is shown
in Figure 9. Here we can see that the HNN classifier performs better than
other classifiers when there are very few training samples, with this margin of
superiority waning as the number of training samples grows. As more train-
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Fig.9. Test rate versus number of training samples for each of the classifiers.

ing images became available, performance of all of supra-classifiers improved,
although to varying degrees.

Second Experiment - Number of Support Classifiers. To study sce-
narios where only a few training examples but a very large number of support
classifiers are available, we used a similar setup as in the first experiment but
with the number of training samples held at five. The number of support
classifiers was varied to measure supra-classifier scalability with increasing
input dimensionality. 200 trials of random training/test set splits for each of
several quantities of support classifiers ranging from 4 to 71 for one of the
users was performed. The average classification test rate over the trials for
the “like/don’t like” labeling versus the number of available support clas-
sifiers is shown in Figure 10. Beyond 36 support classifiers, only the HNN
supra-classifier continued to show improvement and most of the other supra-
classifiers were not scalable beyond a small number of support classifiers.
The naive Bayes classifier actually got worse, probably due to failed inde-
pendence assumptions. All but the naive Bayes and MLP supra-classifiers
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Fig.10. Test rate versus number of input features for each of the classifiers.

however, had statistically significantly better performance than the baseline
MCC classifier.

With a very large number of support classifiers, one would hope that by
only classifying a small number of training images, other images of the de-
sired class could be retrieved. This experiment is germane to such practical
applications of supra-classifier knowledge reuse because even though most of
the image classifications in this experiment were quite subjective in nature,
a supra-classifier was able to use knowledge implicit in these subjective clas-
sifications to classify on a novel concept much better than random guessing.

5 Summary and Recommendations

The problem of insufficient domain knowledge poses a challenge in many im-
age classification problems. Classifier knowledge reuse is discussed as a pos-
sible additional source of domain knowledge beyond traditional training set
and a priori knowledge sources. It provides a more automated process for the
inclusion of large amounts of high level domain knowledge that are implicit
in existing classifiers. The supra-classifier framework is proposed as an ap-
proach to practical classifier knowledge reuse. Several issues of supra-classifier
design and potential supra-classifier architectures are discussed, including the
Hamming nearest neighbor classifier which demonstrates scalability to large
amounts of classifier domain knowledge. Experiments showing two types of
applications of supra-classifier knowledge reuse are presented. The first shows
how to enhance a novel classifier’s performance by reusing knowledge and the
second examines how the supra-classifier framework can be used to estimate
human subjective classifications of images in an image database of fixed com-
position. The experiments indicate that there is no single ideal supra-classifier
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architecture, although the Hamming nearest neighbor did demonstrate excel-
lent performance in the traditionally difficult to handle case of high dimen-
sionality and low training sample size. This motivates further investigation
of the HNN architecture.

Currently, when novel image classifiers are built, most previous classifiers
that may be relevant to the new task are ignored or are simply unavailable.
The construction of a “database of image classifiers” would be a means for
those who have built and those who need to build image classifiers to im-
plicitly collaborate by using existing image classifiers from the database and
contributing newly created ones.
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